Article ID Journal Published Year Pages File Type
1173542 Analytical Biochemistry 2013 7 Pages PDF
Abstract

A simple electrochemical sensor for sensitive and selective DNA detection was constructed based on gold nanorods (Au NRs) decorated graphene oxide (GO) sheets. The high-quality Au NRs–GO nanocomposite was synthesized via the electrostatic self-assembly technique, which is considered a potential sensing platform. Differential pulse voltammetry was used to monitor the DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the peak currents of methylene blue were linear with the logarithm of the concentrations of complementary DNA from 1.0 × 10−9 to 1.0 × 10−14 M with a detection limit of 3.5 × 10−15 M (signal/noise = 3). Moreover, the prepared electrochemical sensor can effectively distinguish complementary DNA sequences in the presence of a large amount of single-base mismatched DNA (1000:1), indicating that the biosensor has high selectivity.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,