Article ID Journal Published Year Pages File Type
1174669 Analytical Biochemistry 2008 8 Pages PDF
Abstract

Intestinal inflammation correlates well with the increased synthesis of nitric oxide (NO), which is attributed mainly to the up-regulation of inducible nitric oxide synthase (iNOS). We optimized the use of interferon γ (IFN-γ), tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β), lipopolysaccharide (LPS), and phorbol myristate acetate (PMA) as inducers to stimulate NO synthesis in Caco-2 cells using a Taguchi design. The results indicated that IFN-γ was the most important inducer of iNOS in Caco-2 cells. Treating Caco-2 cells with both IFN-γ and PMA using an optimal mixture of 8000 U/ml IFN-γ and 0.1 μg/ml of PMA resulted in a synergistic induction of NO synthesis. Further experiments using a 5-factor/2-level factorial design including Caco-2 growth conditions such as cell passage, culture medium composition, cell seeding time and density, and stimulation time were also performed. Cell seeding and stimulation times significantly (P < 0.05) affected NO synthesis, whereas culture medium and seeding density did not appreciably affect NO synthesis in Caco-2 cells. Western blotting and RT-PCR findings confirmed that the optimal mixture of IFN-γ and PMA effectively up-regulated iNOS mRNA and protein. The induced NO, iNOS mRNA, and protein were all inhibited by the iNOS selective inhibitor, aminoguanidine (AG).

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,