Article ID Journal Published Year Pages File Type
1174838 Analytical Biochemistry 2010 9 Pages PDF
Abstract
Multivariate curve resolution with alternating least squares (MCR-ALS) was applied to voltammetric data obtained in the analysis of the competitive binding of glutathione (GSH) and phytochelatins [(γGlu-Cys)n-Gly, PCn, n = 2-5] by Cd2+. The displacements between ligands and chain length influence on the competitive binding of PCn toward Cd2+ were investigated. The analysis of the resulting pure voltammograms and concentration profiles of the resolved components suggests that ligands containing more thiol groups are able to displace the shortest chain ligands from their metal complexes, whereas the opposite does not happen. However, when the length of the chain surpasses that of PC3, the binding capacity of the molecule still increases (i.e., it can bind more metal ions), but the position and shape of the voltammetric signals practically rest unchanged. This suggests that at this level, the stability of metal binding could depend more on the nature of the binding sites separately than on the quantity of the sites (i.e., the chain length).
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,