Article ID Journal Published Year Pages File Type
1175311 Analytical Biochemistry 2009 6 Pages PDF
Abstract

We present a novel method using flow cytometry–fluorescence in situ hybridization (flow–FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. β-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to β-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry. Shifts in fluorescence signal intensity between the β-actin LNA probe and a biotinylated, nonspecific control LNA were used to determine optimal conditions for this type of flow–FISH. Multiple conditions for permeabilization and hybridization were tested, and it was found that conditions using 3 μg/ml of proteinase K for permeabilization and 90 min hybridization at 60 °C with buffer containing 50% formamide allow cells containing the LNA-bound mRNA to be detected and differentiated from the control LNA with high confidence (< 14% overlap between curves). This combined method, called LNA flow–FISH, can be used for detection and quantification of other RNA species as well as for telomerase measurement and detection.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,