Article ID Journal Published Year Pages File Type
1175708 Analytical Biochemistry 2006 10 Pages PDF
Abstract

We report a novel in vitro high-throughput (HTP) kinase assay using surface plasmon resonance (SPR). In vitro tyrosine phosphorylation was performed in a microtiter plate, after which the substrate was captured with an antibody on a sensor chip and phosphotyrosine (pTyr) was detected with an anti-pTyr antibody. The capture and pTyr detection steps were performed using a Biacore A100, which is a sensitive and high-performance flow-cell-based SPR biosensor. This system allowed multiple sample processing (1000 samples/day) and high-quality data sampling. We compared the abilities of the HTP-SPR method and a standard radioisotope assay by measuring the phosphorylation of several substrate proteins by the Fyn tyrosine kinase. Similar results were obtained with both methods, suggesting that the HTP-SPR method is reliable. Therefore, the HTP-SPR method described in this study can be a powerful tool for a variety of screening analyses, such as kinase activity screening, kinase substrate profiling, and kinase HTP screening of kinase inhibitors.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,