Article ID Journal Published Year Pages File Type
1176347 Analytical Biochemistry 2008 8 Pages PDF
Abstract

A systematic comparison of six sugar indicators for their sensitivity, specificity, cross-reactivity, and suitability in the context of crude lysates revealed para-hydroxybenzoic acid hydrazide (pHBH) to be best suited for application in a plate-based phosphatase-assisted universal sugar-1-phosphate nucleotidyltransferase assay. The addition of a general phosphatase to nucleotidyltransferase reaction aliquots enabled the conversion of remaining sugar-1-phosphate to free sugar, the concentration of which could be rapidly assessed via the pHBH assay. The assay was validated using the model glucose-1-phosphate thymidylyltransferase from Salmonella enterica (RmlA) and compared favorably with a previously reported HPLC assay. This coupled discontinuous assay is quantitative, high throughput, and robust; relies only on commercially available enzymes and reagents; does not require chromatography, specialized detectors (e.g., mass or evaporative light scattering detectors), or radioisotopes; and is capable of detecting less than 5 nmol of sugar-1-phosphate. It is anticipated that this high-throughput assay system will greatly facilitate nucleotidyltransferase mechanistic and directed evolution/engineering studies.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,