Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1177151 | Analytical Biochemistry | 2008 | 11 Pages |
The 31P nuclear magnetic resonance (NMR) characteristics, toxicity, and cellular penetration of five linear or cyclic α-aminophosphonate highly sensitive pH probes were investigated in Dictyostelium discoideum cells and isolated rat hearts and were compared with three phosphonic acid derivatives. The line width broadening at pH ∼ pKa, which was satisfactorily modelized for all compounds, was significantly limited in biological milieu for the new markers, affording a four- to sixfold better accuracy in pH determination. Cellular uptake or washout of nontoxic concentrations (<15 mM) of α-aminophosphonates occurred by rapid passive permeation, whereas standard probes required a much slower fluid-phase pinocytosis and transport processes that could ultimately lead to trapping. Using mild concentrations (<4 mM) three α-aminophosphonates having 6 < pKa < 7 allowed an easy and simultaneous 31P NMR determination of cytosolic, acidic, and extracellular compartments in anoxic–reoxygenated or starving D. discoideum.