Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1177915 | Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics | 2010 | 6 Pages |
Yeast glutaredoxins Grx1 and Grx2 catalyze the reduction of both inter- and intra-molecular disulfide bonds using glutathione (GSH) as the electron donor. Although sharing the same dithiolic CPYC active site and a sequence identity of 64%, they have been proved to play different roles during oxidative stress and to possess different glutathione-disulfide reductase activities. To address the structural basis of these differences, we solved the crystal structures of Grx2 in oxidized and reduced forms, at 2.10 Å and 1.50 Å, respectively. With the Grx1 structures we previously reported, comparative structural analyses revealed that Grx1 and Grx2 share a similar GSH binding site, except for a single residue substitution from Asp89 in Grx1 to Ser123 in Grx2. Site-directed mutagenesis in combination with activity assays further proved this single residue variation is critical for the different activities of yeast Grx1 and Grx2.