Article ID Journal Published Year Pages File Type
1179675 Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2006 9 Pages PDF
Abstract
We have applied isothermal titration calorimetry to investigate the linkage between ligand binding and the uptake or release of protons by human serum albumin (HSA) and bovine serum albumin (BSA). The ligands were sodium decyl sulfate (SDeS) and sodium dodecyl sulfate (SDS). Within a certain temperature range, the binding isotherm could be clearly resolved into two classes of sites (high affinity and low affinity) and modeled assuming independence and thermodynamic equivalence of the sites within each class. Measurements at pH 7.0 in different buffer systems revealed that the binding of SDS to the high affinity sites did not couple to any exchange of protons in either of the proteins. Saturation of the 6-8 low affinity sites for SDS, on the other hand, brought about the release of two protons from both HSA and BSA. In addition to elucidating the pH dependence of ligand binding, this analysis stressed that binding enthalpies for the low affinity sites measured by calorimetry must be corrected for effects due to the concomitant protonation of the buffer. The shorter ligand SDeS bound to HSA with a comparable stoichiometry but with four times lower affinity. Interestingly, no proton linkage was observed for the binding of SDeS. An empirical structural analysis suggested that His 242 in site 7 (of HSA) is a likely candidate for one of the proton donors.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,