Article ID Journal Published Year Pages File Type
1179888 Chemometrics and Intelligent Laboratory Systems 2011 7 Pages PDF
Abstract
A recent type of receptor modelling technique the Positive Matrix Factorization (PMF) has been applied to a geochemical dataset obtained by XRF analysis on sediments from 11 alpine lakes located in Italy. Also, two usual pattern recognition techniques, Principal Component Analysis (PCA) and Cluster Analysis (CA), were investigated. Four interpretable factors were identified through PMF analysis, in connection with the mineralogical/chemical features of lake sediments in the catchment areas: phosphate and sulphur source, carbonates, silicates and heavy metal-bearing minerals. Also, to properly modify individual uncertainty estimates, a new PMF factor was identified, explaining a possible Pb contamination source.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,