Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1180186 | Chemometrics and Intelligent Laboratory Systems | 2009 | 9 Pages |
Abstract
The feasibility of using chemometric techniques for the automatic detection of whether a rabbit kidney is pathological or not is studied. Sequential images of the kidney are acquired using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with contrast agent injection. A segmentation approach based upon principal component analysis (PCA) is used to separate out the cortex from the rest of the kidney including the medulla, the renal pelvic, and the background. Two classifiers (Soft Independent Method of Class Analogy, SIMCA; Partial Least Squares Discriminant Analysis, PLS-DA) are tested for various types of data pre-treatment including segmentation, feature extraction, centering, autoscaling, standard normal variate transformation, Savitsky-Golay smoothing, and normalization. It is shown that (i) the renal cortex contains more discriminating information on kidney perfusion changes than the whole kidney, and (ii) the PLS-DA classifiers outperform the SIMCA classifiers. PLS-DA, preceded by an automated PCA-based segmentation of kidney anatomical regions, correctly classified all kidneys and constitutes a classification tool of the renal function that can be useful for the clinical diagnosis of renovascular diseases.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Paman Gujral, Michael Amrhein, Dominique Bonvin, Jean-Paul Vallée, Xavier Montet, Nicolas Michoux,