Article ID Journal Published Year Pages File Type
1180217 Chemometrics and Intelligent Laboratory Systems 2006 6 Pages PDF
Abstract

Wavelet based analysis for mass spectrometry (MS) profiles of three groups of patients are analyzed for the purpose of developing a classification model. The first step in our model uses a DWT for feature extraction, using a linear combination of Symlets, Daubechies and Coiflets wavelet bases – collectively known as a super wavelet. Random Forests and Treeboost are then used to analyze the super wavelet coefficients to form the classification model. The method is illustrated using the publicly available prostate SELDI-TOF MS data from the American National Cancer Institute (NCI). The NCI data consists of 322 MS profiles with 15154 M / Z ratios, comprising of 69 malignant, 190 benign and 63 control patients, which we randomly divided into 70% training and 30% testing. From the Random Forest models, the super wavelet performed 2.7% to 5.7% better than other single wavelet types to give a 100% test set prediction rate for cancerous patients.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,