Article ID Journal Published Year Pages File Type
1180931 Chemometrics and Intelligent Laboratory Systems 2012 19 Pages PDF
Abstract

In the present paper, we give a survey of the recent results and outline future prospects of the tensor-structured numerical methods in applications to multidimensional problems in scientific computing. The guiding principle of the tensor methods is an approximation of multivariate functions and operators relying on a certain separation of variables. Along with the traditional canonical and Tucker models, we focus on the recent quantics-TT tensor approximation method that allows to represent N-d tensors with log-volume complexity, O(d log N). We outline how these methods can be applied in the framework of tensor truncated iteration for the solution of the high-dimensional elliptic/parabolic equations and parametric PDEs. Numerical examples demonstrate that the tensor-structured methods have proved their value in application to various computational problems arising in quantum chemistry and in the multi-dimensional/parametric FEM/BEM modeling—the tool apparently works and gives the promise for future use in challenging high-dimensional applications.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
,