Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1185340 | Food Chemistry | 2014 | 7 Pages |
•We proposed a non-destructive method to predict water status in Jonathan apples.•Chemical methods are used to compare the performance of neural network predictor.•Genetic algorithm with variable length genotype optimized the selection algorithm.
Evaluation of water status in Jonathan apples was performed for 20 days. Loss moisture content (LMC) was carried out through slow drying of wholes apples and the moisture content (MC) was carried out through oven drying and lyophilisation for apple samples (chunks, crushed and juice).We approached a non-destructive method to evaluate LMC and MC of apples using image processing and multilayer neural networks (NN) predictor. We proposed a new simple algorithm that selects the texture descriptors based on initial set heuristically chosen. Both structure and weights of NN are optimised by a genetic algorithm with variable length genotype that led to a high precision of the predictive model (R2 = 0.9534).In our opinion, the developing of this non-destructive method for the assessment of LMC and MC (and of other chemical parameters) seems to be very promising in online inspection of food quality.