Article ID Journal Published Year Pages File Type
1187211 Food Chemistry 2010 6 Pages PDF
Abstract

The modification of Maillard reaction kinetics induced by MgCl2 was evaluated in both liquid and dehydrated model systems with special emphasis on the interactions of the salt with water and/or the sugars. In liquid trehalose systems, browning is accelerated by the presence of MgCl2 due to the increased sugar hydrolysis and to the reduction of water mobility caused by the salt (shown by the decrease in 1H NMR relaxation times T2), counteracting the inhibitory effect of water on the reaction. In water restricted trehalose systems, MgCl2 inhibited the Maillard reaction. The salt–sugar interactions, manifested by the delayed sugar crystallization, decreased the reaction rate by affecting the reactivity of reducing sugars. Molecular and supramolecular effects in the presence of MgCl2 have been observed in the present work, and must be taken into account considering high technological interest in finding strategies to either inhibit or enhance the Maillard reaction depending on the application.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,