Article ID Journal Published Year Pages File Type
1188647 Food Chemistry 2009 6 Pages PDF
Abstract

A hendeca-peptide with angiotensin I-converting enzyme (ACE) inhibitory activity was isolated from the pepsin hydrolysate of algae protein waste, a mass-produced industrial by-product of an algae essence from microalgae, Chlorella vulgaris. Edman degradation revealed its amino acid sequence to be Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe. Inhibitory kinetics revealed a non-competitive binding mode with IC50 value against ACE of 29.6 μM, suggesting a potent amount of ACE inhibitory activity compared with other peptides from the microalgae protein hydrolysates which have a reported range between 11.4 and 315.3 μM. In addition, the purified hendeca-peptide completely retained its ACE inhibitory activity at a pH range of 2–10, temperatures of 40–100 °C, as well as after treatments in vitro by a gastrointestinal enzyme, thus indicating its heat- and pH-stability. The combination of the biochemical properties of this isolated hendeca-peptide and a cheap algae protein resource make an attractive alternative for producing a high value product for blood pressure regulation as well as water and fluid balance.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,