Article ID Journal Published Year Pages File Type
1188917 Food Chemistry 2008 8 Pages PDF
Abstract

The secondary structure of legume (Phaseolus vulgaris L. and Lens culinaris L.) proteins was investigated by studying the amide I infrared absorption band in whole seed flours, before and after dry heating and autoclaving thermal treatments. The analysis procedure, set up on 7S and different model proteins, shows that the content of β-sheet structures in lentil is higher than in common bean (47% vs. 32%). The dry heating does not appreciably affect secondary structures in lentil, while it causes a reduction of β-sheets (to 13%), an increase of aggregates, and the appearance of random coil structures in common bean. The autoclaving treatment produces high amounts of aggregates in both legumes. However, in lentil, random coil structures are lower than in common bean and some β-sheet structures are still detectable. These results indicate that multimeric heat-induced complexes of legume proteins have a high stability because of the high content in β-sheet structures, in particular in lentil, which may adversely affect protein utilization.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,