Article ID Journal Published Year Pages File Type
1192681 International Journal of Mass Spectrometry 2006 9 Pages PDF
Abstract

The stability of bimetallic silver–cobalt clusters with less than 50 atoms is studied experimentally and their associated geometries are predicted by classical modeling. The clusters are created by laser vaporization and inert gas condensation. Their mass distribution is analyzed with time-of-flight mass spectrometry. For clusters containing mainly silver, we find strong quantum size effects related to itinerant behavior of the silver and cobalt valence electrons. In the case of clusters containing mainly cobalt, no pronounced size effects appear in the mass spectra. Photofragmentation experiments reveal that neutral silver atom evaporation is the favorable channel, suggesting that the AgCo bonds are weaker than the CoCo bonds. Consistently, and for both sets of clusters, Metropolis Monte-Carlo simulations predict these clusters to have icosahedral based structures that may depend on temperature. In clusters containing mainly silver, cobalt sits at the cluster center and fragmentation proceeds by the evaporation of silver surface atoms. In clusters containing mainly cobalt, silver atoms also locate at the periphery and are more weakly bound to the cluster than cobalt surface atoms.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,