Article ID Journal Published Year Pages File Type
1192712 International Journal of Mass Spectrometry 2016 13 Pages PDF
Abstract

•CID of acetone coordinated uranyl dication using linear ion trap and FT-ICR MS.•Low H2O content of ion trap allows CID of [UO2(aco)n]2+, n = 1–5, to be investigated in detail using serial, multiple-stage CID.•CID, isotope labeling and IR photodissociation reveal new fragmentation pathways, including formation of uranyl-alkyl species.

Past studies of fragmentation reactions of doubly-charged uranyl (UO22+) complexes have been impeded by very rapid water addition reactions that cause H2O adducts to dominate product ion spectra. The fragmentation of uranyl-acetone (aco) complexes ([UO2(aco)n]2+, n = 1–5), generated by electrospray ionization, is revisited here using: (a) collisional activation in a linear ion trap (LIT) mass spectrometer in which the level of background H2O is significantly lower, and (b) infrared multiple-photon photodissociation (IRMPD, 10.6 μm) in the LIT and a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. Lower levels of adventitious H2O in the LIT provided access to fragmentation of [UO2(aco)n]2+, n = 1–5. For n = 3–5, direct elimination of aco ligands is the favored fragmentation pathway. For n = 1 and 2, charge reduction reactions are dominant. For [UO2(aco)2]2+, the most abundant product ion is [UO2(aco)]+, while UO2+ is observed following collision-induced dissociation (CID) of [UO2(aco)]2+. Minor peaks corresponding to ligated [UO2OH]+ are also observed. The IRMPD experiments in the FT-ICR yielded highly accurate mass measurements that confirm composition assignments, and shed light on dissociation reactions in a gas-phase environment that is entirely free of adventitious H2O. For [UO2(aco)n]2+, n = 3–5, the primary photodissociation channel is direct aco elimination, along with charge-reduction pathways that involve intra-complex proton transfer and formation of species that contain enolate ligands. Similar pathways are observed for IRMPD measurements in the LIT.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (133 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , ,