Article ID Journal Published Year Pages File Type
1194316 International Journal of Mass Spectrometry 2006 8 Pages PDF
Abstract

The fragmentation of the 2,3-pentanedione radical cation gives rise to an unexpected composite metastable ion peak, m/z 72, resulting from the isobaric losses of CO and C2H4. These two fragmentation channels are energetically competitive (i.e., the transition states have similar energies). The two processes yield [CH3C(O)CH2CH3]+ and [CH3C(OH)CO]+, respectively. The latter new ion, which is produced by a McLafferty rearrangement, has ΔfH° = 604 kJ/mol, obtained from G3 calculations. The four competing processes for metastable [CH3COCOCH2CH3]+, the (intense) losses of CH3CO, CH3CH2CO and the weak losses of C2H4 and CO and their transition states were placed on a potential energy surface computed at the G3 level of theory. The homologous ionized diketone 2,3-butanedione also displays the decarbonylation channel and 3,4-hexanedione loses CO and C2H4.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,