Article ID Journal Published Year Pages File Type
1194804 International Journal of Mass Spectrometry 2009 8 Pages PDF
Abstract

The capture of rotationally state-selected and unselected asymmetric top polar molecules by ions is investigated. Analytical expressions (for all rotational states up to j = 2) of capture rate constants in the perturbed-rotor second-order limit are derived for application to low temperature conditions. Approximate analytical representations over wider temperature ranges are also given for rotationally unselected molecules. The capture of H2O, D2O, and HDO by arbitrary ions is chosen for demonstration of the approach. Capture rate constants for the about 60 reactions of H2O with ions listed in the UMIST 2006 data base for astrochemistry are calculated, compared with experimental data, and represented in the format kcap(T) ≈ c1 + c2(T/300 K)−1/2. The parameters c1 and c2 can be predicted in a very simple way. The approach allows one to identify capture-controlled mechanisms and/or to trace experimental artifacts. The approach applies equally well to the capture of symmetric top and linear dipole molecules by arbitrary ions.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,