Article ID Journal Published Year Pages File Type
1195249 Journal of the American Society for Mass Spectrometry 2009 7 Pages PDF
Abstract

In this study, classic molecular dynamics (MD) simulations followed by density functional theory (DFT) calculations are employed to calculate the proton transfer reaction enthalpy shifts for native and derivatized peptide ions in the MALDI plume. First, absolute protonation and deprotonation enthalpies are calculated for native peptides (RPPGF and AFLDASR), the corresponding hexyl esters and three common matrices α-cyano-4-hydroxycinnamic acid (4HCCA), 2,5-dihydroxybenzoic acid (DHB), and 6 aza-2-thiothymine (ATT). From the proton exchange reaction calculations, protonation and deprotonation of the neutral peptides are thermodynamically favorable in the gas phase as long as the corresponding protonated/deprotonated matrix ions are present in the plume. Moreover, the gain in proton affinity shown by the ester ions suggests that the increase in ion yield is likely to be related to an easier proton transfer from the matrix to the peptide.

Graphical AbstractDFT calculations are used to determine the proton transfer reaction enthalpy shifts for native and esterified peptide ions in the MALDI plume.Figure optionsDownload full-size imageDownload high-quality image (116 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,