Article ID Journal Published Year Pages File Type
1197607 Journal of Analytical and Applied Pyrolysis 2012 8 Pages PDF
Abstract

Three sizes of Huadian oil shale lumps from 1 cm to 10 cm were extracted by sub-critical water at 350 °C and 16 MPa for 2–70 h. The oil shale lumps were fractured alone the shale texture in sub-critical water that greatly improved the extraction efficiency of bitumen from the large- and middle-sized sample. The extract yields of bitumen from different sized samples were similar when the extraction time is longer than 20 h and stabilized at about 18 wt.% (ad) after 50 h duration. With the increase of extraction time, asphaltene and preasphaltene extracts were gradually decomposed to maltene. The gas chromatography–mass spectrometry (GC–MS) analysis of the extracts showed that n-alkanes, n-alk-1-enes, isoprenoids, n-alk-2-ones and n-alkanoic acids were the major components. In contrast, aromatic extracts were rare and most of them were remained in the shale residue. The pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) analysis of the spent shale showed that the final undecomposed organics in kerogen were some macromolecular linear hydrocarbon, n-alk-2-ones and n-alkanoic acids fragments. The comparison of the classical pyrolyzate and the sub-critical water extracts showed that the water extracts contained more long-chain alkanes than anhydrous pyrolysis and the alkene extracts could transform to alkanes in sub-critical water. Moreover, the n-alkanoic acids could be decomposed to short-chain compounds through the cleavage of carbon carbon bonds.

► Oil shale lumps are fractured alone the shale texture in sub-critical water. ► Long-chain molecules are further cracked to shorter-chain compounds in sub-critical water. ► Alkenes are gradually reacted in sub-critical water when extended the extracting time. ► Alkanoic acids are decomposed through the CC bonds in sub-critical water. ► Released aromatics are almost phenols and ketones and most are surviving in the oil shale.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,