Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1197796 | Journal of Analytical and Applied Pyrolysis | 2011 | 8 Pages |
Abstract
Properties of ethylene-propylene copolymer (EPM) are determined by ethylene/propylene ratio and degree of block and random sequences. EPM was pyrolyzed and the pyrolysis products were analyzed using gas chromatography/mass spectrometry (GC/MS) to examine pyrolysis products formed from the ethylene-propylene heterosequences. Pyrolysis products formed from EPM were compared with those formed from polyethylene (PE) and polypropylene (PP) to determine the pyrolysis products formed from ethylene-propylene heterosequences of EPM. Principal pyrolysis products formed from ethylene-propylene heterosequences were 3-methyl-1-hexene, 4-methyl-1-hexene, 2-methyl-1-hexene, and 2-heptene. Order of the relative intensity of the pyrolysis products was 2-methyl-1-hexene > 4-methyl-1-hexene > 3-methyl-1-hexene > 2-heptene. The relative abundances of the pyrolysis products decreased as the pyrolysis temperature increased. Relative abundances of the specific pyrolysis products formed from ethylene-propylene heterosequences may be used for determination of the relative degree of random sequences of EPM as well as ethylene-propylene-diene terpolymer (EPDM).
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Sung-Seen Choi, Yun-Ki Kim,