Article ID Journal Published Year Pages File Type
1197802 Journal of Analytical and Applied Pyrolysis 2011 9 Pages PDF
Abstract

Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of cellulose and on-line analysis of the pyrolysis vapors. Experiments were performed to reveal the effects of pyrolysis temperature and time on the distribution of the pyrolytic products, especially the formation characteristics of eighteen important products. During the fast pyrolysis process, the cellulose started decomposition to form organic volatile products at the set pyrolysis temperature of 400 °C. The pyrolytic products included various anhydrosugars (dominated by the levoglucosan (LG)), anhydrosugar derivatives (mainly the levoglucosenone (LGO), 1,4:3,6-dianhydro-α-d-glucopyranose (DGP), 1,5-anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose (APP) and 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one (LAC)), furan compounds (typically the 5-hydroxymethyl-furfural (HMF), furfural (FF) and furan (F)), as well as light linear carbonyls (mainly the hydroxyacetaldehyde (HAA) and 1-hydroxy-2-propanone (HA)). These products were generated with different characteristics. The LG was the most important product, it was thermally stable, and its formation was favored at elevated pyrolysis temperature and time. Most of the other products were also enhanced at elevated pyrolytic conditions. However, some products, such as the LGO, were favorable to be produced at low temperatures. Based on these characteristics, discussion was performed on the possible pyrolytic pathways for the formation of the important products.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,