Article ID Journal Published Year Pages File Type
1197883 Journal of Analytical and Applied Pyrolysis 2011 6 Pages PDF
Abstract

Thermal degradation of ABS and denitrogenated ABS samples (DABS), prepared by sequential hydrolysis of ABS using PEG/NaOH, has been investigated under inert gas and at atmospheric pressure in a temperature range between 40 and 700 °C, by means of TGA, TGA-IR, and TGA-MS, to study the link between original structure of DABS and eventual pyrolysis. For DABS, thermal decomposition begins at the side groups of –CONH2 and/or –COOH, resulting in a lower initial degradation temperature of DABS (around 330 °C) relative to ABS (372.5 °C). Moreover, less HCN and acrylonitrile evolve from the DABS samples, while the evolution of CO2 starts earlier and becomes more important, in line with the decreased number of –CN groups and the increased number of –COOH functional groups due to hydrolysis. The results from thermo-analytical experiments were confirmed by batch pyrolysis tests: the nitrogen content of oil produced from DABS pyrolysis is much lower, compared with that from ABS, proving that effective denitrogenation of ABS prior to pyrolysis is beneficial to the quality of pyrolysis oil.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,