Article ID Journal Published Year Pages File Type
1198170 Journal of Analytical and Applied Pyrolysis 2007 11 Pages PDF
Abstract

The thermal decomposition of n-dodecane, a component of some jet fuels, has been studied in a jet-stirred reactor at temperatures from 773 to 1073 K, at residence times between 1 and 5 s and at atmospheric pressure. Thermal decomposition of hydrocarbon fuel prior the entrance in the combustion chamber is an envisaged way to cool the wall of hypersonic vehicles. The products of the reaction are mainly hydrogen, methane, ethane, 1,3-butadiene and 1-alkenes from ethylene to 1-undecene. For higher temperatures and residence times acetylene, allene, propyne, cyclopentene, 1,3-cyclopentadiene and aromatic compounds from benzene to pyrene through naphthalene have also been observed. A previous detailed kinetic model of the thermal decomposition of n-dodecane generated using EXGAS software has been improved and completed by a sub-mechanism explaining the formation and the consumption of aromatic compounds.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,