Article ID Journal Published Year Pages File Type
1202422 Journal of Chromatography A 2011 6 Pages PDF
Abstract

Derivatized cyclofructans have been recently introduced as a new class of chiral selectors with great application potential. In this study, a R-naphthylethyl-functionalized cyclofructan 6 based chiral stationary phase (RN CF6 CSP) was used for separation of substituted binaphthyl catalysts in the normal phase HPLC mode. Dominant interaction types that play a role in the separation mechanism were revealed by a linear free energy relationship (LFER) method. In order to evaluate the contribution of the substituent on the cyclofructan structure to retention, the R-naphthylethyl-functionalized β-cyclodextrin (RN CD) CSP was chosen for comparison. Retention factors of 46 widely different solutes, with known solvation parameters, were determined on each of the columns under the same mobile phase compositions used for the enantiomeric separations. The LFER results showed that hydrogen bond acidity and polarity/polarizibility have the greatest impact on retention and enantioresolution on the RN CF6 CSP. The equal influence of the naphthylethyl substituent on the both CSPs was also confirmed while the effects of the basic cyclofructan versus cyclodextrin structures were different. The addition of trifluoroacetic acid to the hexane/propane-2-ol mobile phase was negligible on the RN CF6 CSP for the majority of atropoisomers except for one with ionizable functional groups. The RN CF6 column was shown to be more suitable for enantioseparation of the binaphthyl catalysts than the RN CD column. Higher retention offered by the latter CSP had no positive effect on the enantioresolution.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,