Article ID Journal Published Year Pages File Type
1203362 Journal of Chromatography A 2011 12 Pages PDF
Abstract

Poly(N-isopropylacrylamide) (PIPAAm) brush grafted silica beads, a thermo-responsive chromatographic stationary phase, were prepared through a surface-initiated atom transfer radical polymerization (ATRP) using 2-propanol, N,N-dimethylformamide (DMF), and water as reaction solvents. The rate of grafting PIPAAm on silica bead surfaces was different and found to be dependent on the reactivity of reaction solvent. Temperature-dependent elution profiles of hydrophobic steroids from the prepared-beads-packed columns were found to be different, although the graft amounts of PIPAAm were similar on silica bead surfaces. Especially, prepared beads using 2-propanol exhibited a higher resolution than those using DMF. Calibration curves using glucose and pullulan suggested that beads prepared using DMF prohibited analytes to diffuse into the pores. On the contrary, beads prepared using 2-propanol allowed analytes to diffuse into the pores. The pore diameter of the prepared beads, measured by N2 adsorption–desorption measurement, suggested that beads using 2-propanol has relatively larger pore diameter than those using DMF. Thus, the reaction solvent in surfaces-initiated ATRP affected the grafting configuration of PIPAAm on porous silica-bead surfaces, leading to the different separation efficiency of stationary phase for bioactive compounds.

► PIPAAm modified silica beads were prepared through ATRP using 2-propanol, DMF, or water. ► The reaction solvents exhibited different polymerization rate. ► Temperature-dependent elution profiles of hydrophobic steroids from the prepared beads were found to be different. ► Prepared beads using 2-propanol exhibited a higher resolution than those using others. ► Reaction solvent in ATRP affected the separation efficiency of beads for analytes.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,