Article ID Journal Published Year Pages File Type
1203534 Journal of Chromatography A 2011 10 Pages PDF
Abstract

The mass transfer kinetics of alanyl-alanine enantiomers in a column packed with a chiral stationary phase (CSP) ChiroSil RCA(+) was studied by means of the moment method. Methanol–water solutions acidified with sulphuric acid were used as the mobile phase. It was shown that the spreading of peaks in the column was strongly affected by abnormal eddy diffusion. This effect was well described within the framework of the Giddings coupling theory. The comprehensive four-term Giddings equation for eddy diffusion was applied, considering simultaneous contribution of the trans-column, trans-channel, short-range inter-channel, and long-range inter-channel dispersion factors. Through these calculations, a predominant importance of the trans-column flow velocity bias was revealed. Besides eddy diffusion, the adsorption kinetic resistance to mass transfer plays a noticeable role in band broadening, all the other contributions (from longitudinal molecular diffusion, external and intraparticle mass transfer) being of minor significance. A relative importance of the mass transfer kinetics increases correlatively with a growth of the retention factor. Both the retention and kinetics of the adsorption of alanyl-alanine on the CSP in study are enantioselective. The influence of the column pressure on retention as well as corrections required because of this influence are also discussed.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,