Article ID Journal Published Year Pages File Type
1204623 Journal of Chromatography A 2009 7 Pages PDF
Abstract

Electromembrane extraction (EME) of basic drugs from 10 μL sample volumes was performed through an organic solvent (2-nitrophenyl octyl ether) immobilized as a supported liquid membrane (SLM) in the pores of a flat polypropylene membrane (25 μm thickness), and into 10 μL 10 mM HCl as the acceptor solution. The driving force for the extractions was 3–20 V d.c. potential sustained over the SLM. The influence of the membrane thickness, extraction time, and voltage was investigated, and a theory for the extraction kinetics is proposed. Pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from pure water samples with recoveries ranging between 33% and 47% after only 5 min of operation under totally stagnant conditions. The extraction system was compatible with human urine and plasma samples and provided very efficient sample pretreatment, as acidic, neutral, and polar substances with no distribution into the organic SLM were not extracted across the membrane. Evaluation was performed for human urine, providing linearity in the range 1–20 μg/mL, and repeatability (RSD) in average within 12%.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,