Article ID Journal Published Year Pages File Type
1205386 Journal of Chromatography A 2009 7 Pages PDF
Abstract

The packing quality of chromatography columns used for the purification of protein therapeutics is routinely monitored to ensure consistent and reproducible performance. In this work, we used established chromatography models to determine the effect of column packing quality and fluid residence time on the separation of protein therapeutic monomer and aggregate species using a hydrophobic interaction chromatography adsorbent (Phenyl Sepharose Fast Flow). The relationship between the number of theoretical plates, fluid residence time, and column separation performance was quantified using modeling simulations. The simulations showed the separation depended on both the fluid residence time and the number of theoretical plates. However, when the number of theoretical plates was increased to ≥150, the simulations predicted that the separation performance of the column was not significantly improved. The approach described here could be used as a method to quantify acceptable height equivalent of a theoretical plate values for columns, and serve as a tool to understand how column packing quality impacts a given chromatographic separation prior to column scale-up, as well as during the monitoring of column lifetime in the manufacturing of large scale protein therapeutics.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,