Article ID Journal Published Year Pages File Type
1205894 Journal of Chromatography A 2009 9 Pages PDF
Abstract
A bead modeling methodology, BMM, discussed previously to compute the free solution electrophoretic mobility of peptides [H. Pei, Y. Xin, S.A. Allison, J. Sep. Sci. 31 (2008) 554-564], is generalized to avoid the approximation of orientationally preaveraging hydrodynamic interaction. In general, peptide mobilities computed without preaveraging are lower by about 2%. The BMM is then used to study the free solution electrophoretic mobility of several insect oostatic peptides reported previously in a variety of different buffer systems ranging in pH from 2.25 to 8.1 [V. Solinova, V. Kasicka, D. Koval, J. Hlavacek, Electrophoresis, 25 (2004) 2299-2308]. With minor adjustment of the intrinsic pKa0 of the N-terminal peptide, good agreement between modeling and experiment is achieved for peptide models with random secondary structures in the entire pH range. Model mobilities of these peptides appear to be relatively insensitive to the assumed secondary structure.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,