Article ID Journal Published Year Pages File Type
1205928 Journal of Chromatography A 2009 12 Pages PDF
Abstract

New weak cation-exchange membrane adsorbers were prepared via UV-initiated heterogeneous graft copolymerization on Hydrosart® macroporous regenerated cellulose membranes. The dynamic performance was investigated in detail with respect to the pore size and pore size distribution of the base membranes, ion-exchange capacity and architecture of the grafted functional layers as well as binding of target proteins. Main characterization methods were pore analysis (BET and permporometry), titration, analysis of protein binding under static conditions including visualization by confocal laser scanning microscopy and chromatographic analysis of dynamic protein binding and system dispersion. The trade-off between static binding capacity of the membrane adsorber and its permeability has partially been overcome by adapted architecture of the grafted functional layer achieved via the introduction of uncharged moieties as spacers and via stabilization of the binding layer by chemical cross-linking. The resulting membranes show only negligible effects of flow rate on dynamic binding capacity. There is no considerable size exclusion effect for large proteins due to mesh size of functional cross-linked layers. Investigation of system dispersion based on breakthrough curves confirms that the adapted grafted layer architecture has drastically reduced the contribution of the membrane to total system dispersion. The optimum pore structure of base membranes in combination with the best suited architecture of functional layers was identified in this study.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,