Article ID Journal Published Year Pages File Type
1206297 Journal of Chromatography A 2009 7 Pages PDF
Abstract

A conventional solid-phase microextraction (SPME) method combined with liquid–liquid extraction was applied under equilibrium and nonequilibrium conditions to determine the partition coefficients (Kdoc) of 25 polychlorinated biphenyl congeners (PCBs) between Sigma–Aldrich humic acid (HA) and water. The values of log Kdoc determined with equilibrium SPME were linearly correlated with the logarithm of the octanol–water partition coefficients (Kow) for PCB congeners at log Kow < ∼7.2, but the trends were disrupted for log Kow from ∼7.2 to 8.18. In addition, short-term (5 min to 4 days) and long-term (5–44 days) uptake profiles of PCBs were established, from which a pseudo-equilibrium for sorption of PCBs was revealed at ∼4 days of extraction. To understand this phenomenon, the uptake profiles were fitted with two equations (one equation is often used for pure water samples and the other one is applicable for samples containing complex matrices) derived from a first-order kinetics model. Subsequently, Kdoc values obtained through kinetic approaches were compared with those acquired from equilibrium SPME. The comparison of Kdoc values indicated that the pseudo-equilibrium was caused by the slow desorption of PCBs from HA rather than the biphasic desorption mechanism.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,