Article ID Journal Published Year Pages File Type
1206544 Journal of Chromatography A 2008 5 Pages PDF
Abstract

Here we describe a simple approach to fabricate robust three-dimensional periodic porous nanostructures inside the microchannels. In this approach, the colloidal crystals were first grown inside the microchannel using an evaporation-assisted self-assembly process. Then the void spaces among the colloidal crystals were filled with epoxy-based negative tone photoresist. After subsequent development and nanoparticle removal, the well-ordered nanoporous structures inside the microchannel could be fabricated. Depending on the size of the colloidal nanoparticles, periodic porous nanostructures inside the microchannels with cavity size of 330 and 570 nm have been obtained. The dimensions of interconnecting pores for these cavities were around 40 and 64 nm, respectively. The behavior of single λ-phage DNA molecules in these nanoporous structures was studied using fluorescence microscopy. It was found that the length of DNA molecules oscillated in the nanoporous structures. The measured length for λ-phage DNA was larger in the 330 nm cavity than those measured in the 570 nm cavity.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,