Article ID Journal Published Year Pages File Type
1206624 Journal of Chromatography A 2009 7 Pages PDF
Abstract

Liquid-phase microextraction (LPME) has been proved to be a fast, inexpensive and effective sample pre-treatment technique for the analyses of pesticides and many other compounds. In this investigation, a new headspace microextraction technique, dynamic headspace time-extended helix liquid-phase microextraction (DHS-TEH-LPME), is presented. In this work, use of a solvent cooling system, permits the temperature of the extraction solvent to be lowered. Lowering the temperature of the extraction solvent not only reduces solvent loss but also extends the feasible extraction time, thereby improving extraction efficiency. Use of a larger volume of the solvent not only extends the feasible extraction time but also, after extraction, leaves a larger volume to be directly injected into the gas chromatography (GC) to increase extraction efficiency and instrument signal. The DHS-TEH-LPME technique was used to extract six organochlorine pesticides (OCPs) from 110 ml water samples that had been spiked with the analytes at ng/l levels, and stirred for 60 min. The proposed method attained enrichments up to 2121 fold. The effects of extraction solvent identity, sample agitation, extraction time, extraction temperature, and salt concentration on extraction performance were also investigated. The method detection limits (MDLs) varied from 0.2 to 25 ng/l. The calibration curves were linear for at least 2 orders of magnitude with R2 ≧ 0.996. Relative recoveries in river water were more than 86%.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,