Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1207580 | Journal of Chromatography A | 2008 | 6 Pages |
A chiral microemulsion electrokinetic chromatography method has been developed for the enantiomeric separation of 3,4-dihydroxyphenylalanine (dopa), its precursors phenylalanine and tyrosine, and the structurally related substance methyldopa. The separations were achieved using an oil-in-water microemulsion, which consisted of the oil-compound ethyl acetate, the surfactant sodium dodecylsulfate (SDS), the co-surfactant 1-butanol, the organic modifier propan-2-ol and 20 mM phosphate buffer pH 2.5 or 2.0 as aqueous phase. For enantioseparation sulfated β-cyclodextrin was added. The resolution of each racemate was optimized by varying the concentration of the buffer and all components of the microemulsion. Enantioseparation could be achieved for dl-dopa, dl-phenylalanine and dl-tyrosine within 13 min with a resolution of 4.3, 3.1 and 3.3, respectively, and for methyldopa in 17 min (Rs: 1.4). The established methods allowed the detection of dopa, phenylalanine, tyrosine and methyldopa with a limit at 0.5, 1.0, 0.2 and 2.0 μg/ml.