Article ID Journal Published Year Pages File Type
1209271 Journal of Chromatography A 2007 12 Pages PDF
Abstract

A novel single-column setup for experimentally reproducing the steady periodic behavior of simulated countercurrent multicolumn chromatography is presented. The system relies on accurate online monitoring of the outlet effluent composition, processing the measured data through a node balance, and feeding it back into the column with an appropriate time delay using a multi-pump configuration to reproduce the desired inlet stream. The feasibility of the proposed system is demonstrated on the linear separation of two nucleosides using three different column configurations, which include both synchronous and asynchronous port switchings. By judiciously selecting the switching interval for process startup and applying a model-based startup procedure, the periodic state can be attained in just one or two cycles. Therefore, mobile phase and solute consumptions required to experimentally reproduce the periodic state of the equivalent multicolumn process are reduced to a minimum. This may be an economic, optimal manner of experimentally testing a set of operating conditions or cycle policy to achieve a given separation performance for a new multicolumn chromatographic separation.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,