Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1210610 | Journal of Chromatography A | 2009 | 9 Pages |
We have developed a method of independently tailoring the macro- and mesoporous structures in titania (TiO2) monoliths in order to achieve liquid chromatographic separations of phosphorous-containing compounds. Anatase TiO2 monolithic gels with well-defined bicontinuous macropores and microstructured skeletons are obtained via the sol–gel process in strongly acidic conditions using poly(ethylene oxide) as a phase separator and N-methylformamide as a proton scavenger. Aging treatment of the wet gels in the mother liquor at temperatures of 100–200 °C and subsequent heat treatment at 400 °C allow the formation and control of mesoporous structures with uniform pore size distributions in the gel skeletons, without disturbing the preformed macroporous morphology. The monolithic TiO2 rod columns with bimodal macro–mesoporous structures possess the phospho-sensitivity and exhibit excellent chromatographic separations of phosphorus-containing compounds.