Article ID Journal Published Year Pages File Type
1214579 Journal of Chromatography B 2009 7 Pages PDF
Abstract

It was hypothesized that the hydrophilic interaction liquid interface chromatography (HILIC) mode should produce more response than the reversed-phase HPLC mode on detectors with an evaporative component to the detection process. HILIC mobile phases are mostly composed of polar organic solvent and are more volatile than reversed-phase mobile phases. Therefore the more easily evaporated HILIC mobile phases should produce greater sensitivity for those detectors that remove mobile phase by evaporation. The responses of 12 compounds were measured in the reversed-phase mode and the HILIC mode with three detectors: evaporative light scattering detector (ELSD), corona charged aerosol detector (cCAD), and electrospray mass spectrometry (ESI-MS). The compounds studied were very polar compounds that were retained in the HILIC mode. Generally, the HILIC mode was able to achieve greater sensitivity than the reversed-phase mode for these compounds. The increases in sensitivity observed can be attributed to the more volatile HILIC mobile phase. For the ELSD, the HILIC mode produced slightly greater sensitivity than the reversed-phase mode. The cCAD was approximately 10 times more sensitive in the HILIC mode and the ESI-MS was approximately 5–10 times more sensitive in the HILIC mode. There was one instance in the study where a compound produced more response in the reversed-phase mode. Thymine yielded more sensitivity in the reversed-phase mode with the ESI-MS detector. In a given mode of operation, there was significant variation in the measured response factors for all compounds on each detector. While this is not unexpected for the ESI-MS detector, variation in the response factors between compounds indicates that the cCAD and ELSD are not truly universal detectors in the sense that all compounds have identical responses.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,