Article ID Journal Published Year Pages File Type
1224783 Journal of Pharmaceutical and Biomedical Analysis 2006 9 Pages PDF
Abstract

The N-terminal glutamic acid (Glu) can be cyclized to form pyroglutamate (pGlu). Recent studies have suggested that N-terminal pGlu formation is an important posttranslational or co-translational event and is greatly facilitated by the enzyme glutaminyl cyclase, although the impact of the N-terminal cyclization on the potency and overall stability of mAbs is not been well known. Since most recombinant monoclonal antibodies (mAbs) contain glutamic acid and/or glutamine at their N-terminus, understanding the cyclization mechanisms may shed light on the factors that control the pGlu formation in therapeutic mAb development.Here, two mass spectrometry-based techniques were developed to investigate N-pyroglutamyl formation and the high conversion rate to pGlu at the N-terminus of the mAb was reported in the formulation development. The pGlu formation is favored at pH 4 and 8, but is less common at the neutral pH that is optimum for the enzymatic Glu conversion. These observations suggest that pGlu formation can proceed non-enzymatically at mild conditions and that this cyclization is not driven by glutaminyl cyclase in non-physiological conditions. We also calculate the half-lives of the N-terminal Glu at different pH and temperatures from the kinetics data, which would be very helpful for predicting pGlu formation and for selecting proper formulation and storage conditions.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,