Article ID Journal Published Year Pages File Type
1227826 Microchemical Journal 2010 7 Pages PDF
Abstract

A solid sampling flame furnace atomic absorption spectrometry (SS-FF-AAS) system was developed for Mn and Ni determination in petroleum coke. The proposed system for solid sampling was a quartz cell with two perpendicular tubes (T-shaped tubes), positioned above the burner. Manganese and Ni determination was made using an atomic absorption spectrometer with deuterium background corrector, air–acetylene flame and a single slit burner. Powdered samples of coke were introduced as pellets (up to 62 mg) into the quartz cell with a movable hollow quartz piston. When the sample pellet reached the end of quartz cell (T-connection), in the presence of a constant oxygen flow, it quickly burned and the combustion products were transferred to the upper slit tube where the atomic absorption process occurs. Calibration was possible using aqueous reference solutions applied directly on high purity graphite pellets. Results obtained for Mn and Ni using the proposed SS-FF-AAS system were compared to those obtained by inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS) after sample decomposition by high pressure microwave assisted acid digestion and also by microwave induced combustion. Agreement better than 96% was obtained for both methods employing a previous step of sample digestion (ICP OES and ICP-MS) and by SS-FF-AAS. Accuracy was evaluated using certified reference materials and also recovery tests. The relative standard deviation was lower than 9% for both analytes. The characteristic mass was 18.3 and 14.7 ng and the limit of detection was 0.6 and 0.8 µg g− 1 for Mn and Ni, respectively. The proposed SS-FF-AAS system can be applied for Mn and Ni determination in petroleum coke, combining a relatively high sample throughput (9 determinations per h), and a suitable precision and accuracy.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,