Article ID Journal Published Year Pages File Type
1231603 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015 5 Pages PDF
Abstract

•To develop Near Infrared (NIR) spectroscopic method for analysis of sucrose in date’s fruit.•To build PLS regression models to quantify the unknown amount of sucrose in date’s fruit.•To build PCA model to explore the classification among various varieties of dates.

A Near Infrared (NIR) spectroscopic method combined with multivariate calibration was developed for the determination of the amount of sucrose in date fruits growing in the Sultanate of Oman. In this study two groups of samples were used: one group of 48 sucrose standard solutions in the concentration range from 0.01% to 50% (w/v) and another group of 54 date fruit samples of 18 different varieties. The sucrose standard samples were split in two sets, i.e. one training set of 31 samples and one test set of 17 samples. All samples were measured with a NIR spectrophotometer in the wavelength range from 700 to 2500 nm. The spectra collected were preprocessed using baseline correction and Savitzky–Golay 1st derivative. Partial least-squares regression (PLSR) was used to build the regression model with the training set of 31 samples. This model was then validated by using random leave-one-out cross-validation. Later, the PLS regression model was externally validated by using the test set of 17 samples of known sucrose concentration. The root mean squared error of prediction (RMSEP) was found to be of 1.5%, which shows a good prediction ability of the model. Finally, the PLS model was applied to the spectra of 54 date fruit samples to quantify their sucrose amount. It was found that the Khalas, Barnia Nizwi, Ajwa Almadina, Maan, and Khunizi varieties contain high amounts of sucrose, i.e. ranging from 36% to 60%, while Naghal, Fardh, Nashu and Qash Tabaq varieties contain the least amount of sucrose, ranging from 3.5% to 8.1%.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , , , , , ,