Article ID Journal Published Year Pages File Type
1233986 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014 6 Pages PDF
Abstract

•Synthesis of antibacterial and bioactive Ag/Mg-HAP powders was achieved.•Antibacterial property is due to Ag in HAP but higher concentration is toxic.•Mg offset the toxic nature of Ag and provides better bioactivity.

The present work is aimed at the synthesis of antibacterial and bioactive silver/magnesium co-substituted hydroxyapatite (Ag/Mg-HAP) powders. For this purpose, firstly, different concentrations (0.5, 1.5, 2.5 wt.%) of silver substituted HAP (Ag-HAP) powders were prepared by ultrasonic irradiation technique and were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). Secondly, magnesium (Mg) is co-substituted as secondary material into Ag-HAP to offset the potential cytotoxicity of Ag, as higher concentration of Ag is toxic. The antibacterial activity of as-synthesized powders was evaluated by Escherichia coli (E. coli) and was found to be effectively high against bacterial colonization. Also, the in vitro cell-material interaction is evaluated with human osteosarcoma MG63 (HOS MG63) cells for cell proliferation. The results showed the evidence of cytotoxic effects of the higher concentration of Ag-HAP characterized by poor cellular viability whereas, Ag/Mg-HAP showed better cell viability indicating that co-substitution of Mg in Ag-HAP effectively offset the negative effects of Ag and improve performance compared with pure HAP. Thus, the as synthesized Ag/Mg-HAP will serve as a better candidate for biomedical applications with good antibacterial property and bone bonding ability.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,