Article ID Journal Published Year Pages File Type
1235697 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007 6 Pages PDF
Abstract

The comparison between non-magnetic spin-Peierls (SP) and magnetic Néel ground states have been investigated in CuGeO3 doped with Zn2+, Ni2+ and Mn2+ ions by using the electron spin resonance (ESR) techniques in the temperature range of 3–300 K. It was concluded that the one-dimensional (1D) antiferromagnetic (AF) spin chain formed of spin-1/2 (Cu2+) ions is broken by spin-0 (Zn2+), spin-1 (Ni2+), and spin-5/2 (Mn2+) ions, giving uncoupled spins at the end of the chains that give extra contribution to the spectra at lower temperature. An almost linearly dependence of frequency of resonance field has been showed for X-, K- and Q-band spectra. By the analysis of resonance field–frequency relations, the effects of the internal field is refined and thus the spectroscopic g-factor and internal field were calculated to be g = 1.9386 and Hi = 148 G, respectively.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
,