Article ID Journal Published Year Pages File Type
1237096 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009 5 Pages PDF
Abstract
CuS nanotubes (NTs) made up of nanoparticles were successfully prepared in large quantities in an O/W microemulsion system under low temperature. Based on the characteristics of synchronous fluorescence spectroscopy (SFS), a new method with high sensitivity and selectivity was developed for rapid determination of silver ion with functional copper sulphide (CuS) nanotubes as a fluorescence probe. Under optimal conditions, functional copper sulphide displayed a calibration response for silver ion over a wide concentration range from 1.0 × 10−10 to 1.0 × 10−8 mol L−1. The limit of detection was 0.5 × 10−10 mol L−1 and the relative standard deviation of eight replicate measurements for the highest concentration (1 × 10−8 mol L−1) was 3%. Compared with several fluorescence methods, the proposed method had a wider linear range and improved the sensitivity. Furthermore, the concentration dependence of the synchronous fluorescence intensity is effectively described by a Langmuir-type binding isotherm.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,