Article ID Journal Published Year Pages File Type
1237655 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009 6 Pages PDF
Abstract

Nano-TiO2 and superoxide dismutase (SOD, EC 1.15.1.1) have been added to cosmetics and used to prevent injury of skin from UV-radiation, which might be related to the decrease of oxidative damage of skin. In previous studies we had proven that nano-anatase could increase the activity of SOD and decrease the oxidative damage in vivo. The mechanisms by which nano-anatase promoted SOD activity, however, are still not clearly understood. In the present work, nano-anatase in various concentrations was added to SOD from rat erythrocytes in vitro to gain insight into the mechanism of molecular interactions between nano-anatase and SOD by various spectral methods, suggesting that the reaction between SOD and nano-anatase was two-order, which meant that the SOD activity was greatly increased by low concentration of nano-anatase and inhibited by high concentration of nano-anatase. The spectroscopic assays suggested that the nano-anatase was determined to directly bind to SOD; the binding site of nano-anatase to SOD was 0.256 and the binding constants were 6.54 × 105 and 3.6 × 105 L mol−1; Ti was bound with three oxygen or nitrogen atoms and a sulfur atoms of amino acid residues at the Ti–O(N) and Ti–S bond lengths of 1.86 and 2.37 Å, respectively, the binding nano-anatase entirely altered the secondary structure of SOD. It implied that the nano-anatase coordination created a new metal ion-active site form in SOD, thus leading to an enhancement in SOD activity.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , , ,