Article ID Journal Published Year Pages File Type
1240091 Spectrochimica Acta Part B: Atomic Spectroscopy 2011 9 Pages PDF
Abstract

The investigations on structure and micro-chemical composition of archaeological metal alloys are needed in archaeometry. The aim of this study is devoted both to acquire information about their provenance and production technology, and to improve our understanding about the corrosion processes. In this paper we present the study of the corrosion phenomena of bronze samples, laboratory-made according to binary, ternary and quaternary alloys typical of Roman archaeometallurgical production through an integrated methodology based on the use of non or micro invasive physical techniques. Among the analysed samples, two were artificially aged through burial in the archaeological site of Tharros, along the west coast of Sardinia (Italy). The corrosion products, typical of the bronzes in archaeological sites near the sea, have been characterized by non invasive and micro-destructive measurements. In particular, the corrosion patinas were examined through optical microscopy, scanning electron microscopy and microanalysis, X-ray fluorescence and laser ablation spectroscopy. The use of integrated technologies allowed us to determine both the elemental composition and surface morphology of the patina, highlighting the correlation between patina nature and chemical composition of the burial context. Moreover, data obtained by the laser-induced breakdown spectroscopy along the depth profile on the samples, have yielded information about the stratigraphic layers of corrosion products and their growth. Finally, the depth profiles allowed us to verify both the chemical elements constituting the patina, the metal ions constituting the alloy and the occurrence of migration phenomena from bulk to the surface.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,