Article ID Journal Published Year Pages File Type
1240305 Spectrochimica Acta Part B: Atomic Spectroscopy 2010 6 Pages PDF
Abstract

We have performed spectroscopic analysis of the plasma produced by pulsed laser ablation of brass in a low pressure argon atmosphere. The intensities of several spectral lines of copper, zinc and lead were measured for succeeding laser pulses applied to the same irradiation site. The intensities and spectral shapes of the observed transitions were compared to the spectral radiance computed for plasma in local thermal equilibrium. At a delay of 600 ns after the laser pulse, the plasma is characterized by typical values of temperature and electron density of 1.1 × 104 K and 1.2 × 1017 cm− 3, respectively, and an elemental composition equal to that of the sample. Small changes of spectral line intensities were observed with increasing number of applied laser pulses. They were attributed to the alteration of the plume expansion dynamics as a consequence of crater formation on the sample surface. The results indicate that the mass transfer from the solid to the plasma is stoichiometric.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,